skip to main content


Search for: All records

Creators/Authors contains: "Brown, Thomas G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The pixel modulation transfer function response degrades the contrast of non-null interferometric surface figure measurements. We experimentally quantify this effect for spatial frequencies ranging from 0 to 363 lp/mm (≈<#comment/>3.33times the Nyquist limit). Our results show a low SNR spatial frequency band that behaves like a low-pass filter for sub-Nyquist interferometry and a stop-band filter for multiple-wavelength phase-shifting interferometry. We also introduce a multiple-mode, multiple-wavelength interferometry approach to measure optical surfaces with slope departure angles mapping to spatial frequencies in this low SNR band. The extended measurement range of this approach is achieved without using a sparse-array detector.

     
    more » « less
  2. We present a method of photon orbital angular momentum selection at very low light levels using spatial interference between a strong local oscillator field and a weak beam. By using Fourier phase recovery techniques familiar in classical interferometry, we can experimentally obtain a quantum-limitedQdistribution with a standard deviation consistent with the quantum noise floor. Further, by projecting the complex Fourier peak on a Laguerre–Gauss basis, we can distinguish states of different orbital angular momentum with high fidelity for small numbers of counts per acquisition frame. The noise equivalent photoelectron count for this measurement is10−<#comment/>5counts per pixel per frame.

     
    more » « less
  3. Abstract

    Super-resolution imaging based on single molecule localization allows accessing nanometric-scale information in biological samples with high precision. However, complete measurements including molecule orientation are still challenging. Orientation is intrinsically coupled to position in microscopy imaging, and molecular wobbling during the image integration time can bias orientation measurements. Providing 3D molecular orientation and orientational fluctuations would offer new ways to assess the degree of alignment of protein structures, which cannot be monitored by pure localization. Here we demonstrate that by adding polarization control to phase control in the Fourier plane of the imaging path, all parameters can be determined unambiguously from single molecules: 3D spatial position, 3D orientation and wobbling or dithering angle. The method, applied to fluorescent labels attached to single actin filaments, provides precisions within tens of nanometers in position and few degrees in orientation.

     
    more » « less
  4. Quantum random walks (QRWs) are random processes in which the resulting probability density of the “walker” state, whose movement is governed by a “coin” state, is described in a nonclassical manner. Previously, Q-plates have been used to demonstrate QRWs with polarization and orbital angular momentum playing the roles of coin and walker states, respectively. In this theoretical analysis, we show how stress-engineered optics can be used to develop new platforms for complex QRWs through relatively simple optical elements. Our work opens up new paths to speed up classical-to-quantum transitions in robust photonic networks.

     
    more » « less
  5. Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While its original applications were in remote sensing, modern uses include agriculture, historical document authentications and medicine. HSI has shown great utility in fluorescence microscopy; however, acquisition speeds have been slow due to light losses associated with spectral filtering. We are currently developing a rapid hyperspectral imaging platform for 5-dimensional imaging (RHIP-5D), a confocal imaging system that will allow users to obtain simultaneous measurements of many fluorescent labels. We have previously reported on optical modeling performance of the system. This previous model investigated geometrical capability of designing a multifaceted mirror imaging system as an initial approach to sample light at many wavelengths. The design utilized light-emitting diodes (LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide (LLG). The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent results presented here show transmission has increased up to 9% through parametric optimization of each component. Future work will involve system validation using a prototype engineered based on our optimized model. System requirements will be evaluated to determine if potential design changes are needed to improve the system. We will report on spectral resolution to demonstrate feasibility of the RHIP-5D as a promising solution for overcoming current HSI acquisition speed and sensitivity limitations. 
    more » « less
  6. Multiple wavelength interferometry has long been considered an option for the measurement of large aspheric slope departures. In particular, a synthetic wavelength offers a variety of approaches by which large phase excursions can be unwrapped. Using multiple wavelengths can create collimation and magnification mismatch errors between the individual wavelengths that arise during beam expansion and propagation. Here, we present and analyze alignment and calibration methods for a dual-wavelength interferometer that can significantly reduce both misalignment errors and chromatic aberrations in the system. To correct for misalignment, a general method is described for the alignment of a dual-wavelength interferometer, including the alignment of lasers, beam expanders, beam splitters for combining beams and for compensating errors in the reference surface, and the fringe imaging system. A Fourier transform test at the detector surface was conducted to validate that there is essentially no magnification difference between two wavelengths resulting from misalignment of optical system. For the chromatic aberration introduced by the optical elements in the system, a ray-trace model of the interferometer has been established, to simulate the chromatic effect that optical elements will have on the measurement results. As an experimental test, we examine an off-axis spherical mirror in a non-null condition using a highly aliased interferogram. The above alignment methods and the results are analyzed based on the simulated system errors. Using this method, we demonstrate a measured surface profile of deviation of λ/25 which is comparable to a direct measurement profile of the surface on axis using a Fizeau interferometer. 
    more » « less